On the Stability of Relaxed Incomplete Lu Factorizations

نویسندگان

  • A. M. BRUASET
  • R. WINTHER
چکیده

When solving large linear systems of equations arising from the discretization of elliptic boundary value problems, a combination of iterative methods and preconditioners based on incomplete LU factorizations is frequently used. Given a model problem with variable coefficients, we investigate a class of incomplete LU factorizations depending on a relaxation parameter. We show that the associated preconditioner and the factorization itself both are numerically stable. The theoretical results are complemented by numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stability Analysis of Incomplete LU Factorizations

The combination of iterative methods with preconditionings based on incomplete LU factorizations constitutes an effective class of methods for solving the sparse linear systems arising from the discretization of elliptic partial differential equations. In this paper, we show that there are some settings in which the incomplete LU preconditioners are not effective, and we demonstrate that their ...

متن کامل

ILUS: An Incomplete LU Preconditioner in Sparse Skyline Format

Incomplete LU factorizations are among the most eeective preconditioners for solving general large, sparse linear systems arising from practical engineering problems. This paper shows how an ILU factorization may be easily computed in sparse skyline storage format, as opposed to traditional row-by-row schemes. This organization of the factorization has many advantages, including its amenability...

متن کامل

LU factorizations and ILU preconditioning for stabilized discretizations of incompressible Navier-Stokes equations

Funding Information Russian Science Foundation, Grant/Award Number: 14-31-00024 Summary The paper studies numerical properties of LU and incomplete LU factorizations applied to the discrete linearized incompressible Navier–Stokes problem also known as the Oseen problem. A commonly used stabilized Petrov–Galerkin finite element method for the Oseen problem leads to the system of algebraic equati...

متن کامل

Computing a block incomplete LU preconditioner as the by-product of block left-looking A-biconjugation process

In this paper, we present a block version of incomplete LU preconditioner which is computed as the by-product of block A-biconjugation process. The pivot entries of this block preconditioner are one by one or two by two blocks. The L and U factors of this block preconditioner are computed separately. The block pivot selection of this preconditioner is inherited from one of the block versions of...

متن کامل

Approximate and Incomplete Factorizations

In this chapter, we give a brief overview of a particular class of preconditioners known as incomplete factorizations. They can be thought of as approximating the exact LU factorization of a given matrix A (e.g. computed via Gaussian elimination) by disallowing certain ll-ins. As opposed to other PDE-based preconditioners such as multigrid and domain decomposition, this class of preconditioners...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010